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ERRATA

The following manuscript amend~~ nts are to be carr ied out :-.

Page 5 — Para 15 line 3 — delete “
~scatt~&• ”’ insert

Page 7 — Para 20 equation (1 2) — delete “d5r ”
~ 

insert “dSr ”~

Para 25 equati on (14.) — delete “U(x.,t) = e~~ t 
• • • •  

II

insert “TJ(r,t) ~~ e~~’~ •• • •

Page 9 — Para 31 last lj~~ - insert “(26)” at ~~ght hand sid e of page. —

Para 31 equation (26) — delete “p = A 1 
(wBf

1
L’ q +

insert “p = C1 (iwBf 1L’ q + P~~0).

Page 11 — Para 36 equation (35) — delete “S = 1wBX 1L’ e (A + .... ft

insert “S iwBX 1L’ 8 (A + .... “ -~~~~

Para .56 equation (36) — delete “(A + 1w 8T (C + LA~~BL’) ....
insert “(A + iw 9T (C + LA 1BX 1L’) ....

Para 35 last line — delete “A is tha ...,,.“

insert “A is the ,. ., ,“

Page 12 — Para 4.2 equation (4.2) — end of’ first line — delete “v(2V—1 ) £3”

insert “v(2v—1 ) £3

Page i6 — Reference 12 line 2 — delete “User’s”, insert ~~~~~~~~~~~~

Page 17 — Referenoe 21 line 2 — delete “User’s”, insert “Users’”.
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ACOUSTIC RADIATION AND SCATTERING FROM ELASTIC STRUC’IURES

PRECIS

1. This report presents a numerical technique f or the linear dynamic analysis
of a f ini te  elastic structure immersed in an infinite homogeneous acoustic medium.
It is required to determine the vibrat ory mot ion of the structure and also the
associated acoustic field in the fluid , when the structure is either subjected
to internal applied forces or is acting as a scatterer of an incident acoust ic
wave. A f in i te  element analysis of the structure is matched at the structure—
fluid interface wi th  an int egral equation representation of the exterior acoustic

• field, leading to a coupled system of equations which may be cast in either
acoustic or structural form . The former approach is preferred here for which
numerical results are presented when the method is applied to plane wave scatter-
ing by thick and thin elastic spherical shells.

CONCLUSIONS

2. By c ombining equations derived, from a finite element analysis of a vibrat-
ing elastic structure with those from an integral equation represent ation of an
inf inite exterior acoust ic f ield, sri analysis of the coupled dynamic interact ion
problem has been shown to be feasible.

3. The structural and acoustic models may be chosen completely independent ly
although the procedure does simplify if interpolation nodes are made to coincide sthe coupling being defined through three interact ion matrices X , L and L’. Thus
advantage may be taken of existing computer program packages designed to solve
the two uncoupled problems. In part icular, it is hoped to combine the PAFEC43
structural analysis program with the acoustic radiation/scattering program des-
cribed in this report38.

4. Some test examples for which analytic solut ions are available have demon-
strated the practicability and accuracy of’ the approach. It is hoped in the near
future to be able to compare numerical and experimental results for some more
complex structures in water. If an unacceptably large number of degrees of free—

• dom for the struc tural model are required, it may then be necessary to consider
the alternative modal approach.
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3.

INTRODUCTION

5. This report presents a numerical technique for the linear dynamic analysis
of a finite elastic structure immersed in an infinite homogeneous acoustic medium.
This problem commonly occurs in underwater acoustics where it is of considerable
interest to determine the acoustic field both radiated by a submerged vibrating
structure , and also scattered by a submerged elastic structure. It is well—known
that the vibrational properties of a structure can signif icant ly affect the
scattered acoustic field , particularly when the acoustic medium is water s the
impedance mismatch being much less than between a structure and air , and the
assumption which is frequent ly made that the structure is perfectly rigid is often

• an oversimplification of the true situation.

6. Analytical approaches to such coupled structure—fluid interaction problems
are almost invariably concerned with spherical or infinite cylindrical geometries
for which the classical method of separation of variables is available1, since
in these cases normal structural modes, not coupled by radiation loading, exist.
In particular, approximate shell theory has been extensively used to determine

the response of thin elastic shells wider acoustic loading.2”4

7. Until relatively recently little progress had been made t owards the solu-
tion of interaction problems for other geometries. However, now that general
numerical methods have been independently developed f or both the structural and.
acoust ic problems, the feasibility of combining these techniques to tackle the

coupled problem has been realised.5’
~~

2 For a complex structure subjected to known

applied forces the fini te  element m ethod13 has become an accepted, well—proven ,
and highly successful analysis tool. Similarly, although certainly less widely
applied, methods for determining the acoustic field radiated or scattered from a
structure have been developed when boundary conditions on the structure surface
are assumed to be known~ e.g. rigid surface, soft ‘pressure release’ surface.

These methods are usually based on integral equation formulations~
4’
~~
7 arid.

• approximated using finite element type expansions.

8. Indeed, although the term ‘finite elements’ is only now being explicitly
• associated with methods for the solut ion of integral equations , if the name is

understood to refer to the local piecewise nature of the approximat ion to the
domain of the equation and also to the unknown function, arid, not necessarily
associated with any part icular method for determining the function parameters,
such techniques have been in evidence f or some t ime. Most commonly, when apply’—
j ug the finite element method to integral equations , the parameters are deter-
mined through collocation since the more familiar methods of Galerkin or using a
variational principle require a further integration over the domain of the
equation. When that domain is an arbitrary surface in three—dimensional
Euclidean space over which the integrat ions are performed numerically, a repeated
integration could be extremely costly in computer time. In fact Maxwell effec-
tively solved the integral equation relating the potential of a thin charged
conducting square plate to the surface charge density by a finite element

• 18
approach in 1879 . Although the complete details are not given he apparently
accounted for the expected singularity in the charge density at the edges and.
corners of the plate by using singular basis ( shape) functions in these regions.

Also product integration, which was introduced by Young~
9 in 1954 as a technique

for the solution of integral equations, is in its most popular form no more than
a finite element method.

- 
—
~
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ACOUSTIC EQUATIONS

9. Small amplitude acoustic waves pro pagate through an ideal homogeneous
:‘luid of’ density p 1 and speed of sound o , according to the linear wav e equation

V 2P(r , t) — .i~ L~ P(r ,t)  = 0 (i)

where P(r ,t ,  is the excess acoustic pressure at a positi on E in the fluid at

time t. Soi.md pressure is related to particle velocity V(r ,t) through

VP(r,t) = (r,t). (2)

10. For a single frequency harmon.ic time dependence of the form eia~t, where ~i

is the angular frequency, equation (i) beoomes the Helzholtz or reduced wave
equation

(V 2 
+ k

2
) p(r) = 0 (3)

wher e

P(r,t) = p( r )e~~
t (if)

and k = &/c is the acoustic wavenuniber.

11. When the d omain of the partial dif ferential equation (3) is that inf inite
region exterior to the structure sw’f’ace , techniques normal ly employe d for the
appro cim tte solution of such equations (finite differences, finite elements eto)
present obviou s difficulties of implec~ ntation. A bo undary must be introduced
at ~~~~ fini te  distance f rom the structure together with a b oundary condition
there which should appr oximate the true radiation condi ti on at infinity , to ensure
t~iat al] acousti c waves either radiated or scattered by the struc ture are outgoing

there. Such an approach was suggested by Zienkiewicz and Newton2° using a system
of’ dashpot s on the outer fluid boundary, al though the c orrectness of this pro-
cedure has been questioned. ~ven if the appropria te boundary condition could
be aerived 22 , such method s necessarily require a large number of nodes , particu—
lar ly in a three—dimensiona l situation, at each of whioh an approximation to the
solution i~ produced. In practice however, it is often only the acoustic field
at a ~e1cct .ed number of nearfield positions and also the farf ield radiation
pattern that is of interest.

12. Thus the ma jority 01’ w cs-ker s in acoustic s have chosen to reformulate the
dif ferential t~i-~~ lem (i.e. differential e~~iation plus sufficie nt b oundary co ndi—
t~ ons~ a ~~ ntegra3 equation. This approa ch has the immediate advantage that
~‘~e iru ’i nite exterior c~ main of the differential equation reduces to a f ini te
dom~ ir. ~f -~rm e dimension less (the structure surface) for the integral equation.
Hencc only ~‘ur faoe values are ini tially calcula ted from which the field at any
posit~~ n~ of interest may be evaluated thr ough the integral representation
inhcr ’~’:it L~ the approach. Also , the exact radiation conditi on is automatically
inicluled in ~ny integra l equation formulation.

13. Unfor tunately, all the classica l formulations of’ the Helmholtz equation
in as exterior regi on as an integral equation -. equivalent single or double

- • -- -“~~~~~~~~ - —•~~~~~~~~ • - ~~~~~~ ~~~~~~~~~ - - •• “ • -
~~~~~~~~ •- - 1-~
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layer sour ce distributions ci’ via Green ’s Theorem — break down either through
non—uniqueness or non—existence of their solutions at certain wavenumbers.
This failure is completely non—physical in nature, being solely due to the
integral equation foriailation, and is associated with the existence of eigen—
solutions of the Melmholtz equation within the regi on interior to the sur face
of interest ,23’24. Various ‘improved. ’ formulations have been proposed which are
either desi gned to mitigate the problem at low fre quencies,”25 or to eliminate
it oompletely. 26”28 These latter met hods require c onsiderably more computa-
tional effort to implement and have as yet not form ed the basis of any practical
acou stic radiati on/scattering computer program, although test program s hav e been
wri tten and applied to soma simple pr oblems in two~~ and thr ee~~ dimensions . A
comprehensive feasibility study for suc h a pr ogram package has recentl y been

31oomple ted..

I L ,.. In ord er to illustra te the coupling procedur e prop osed here , the integ ra l
equat ion ap pr oach due to Schenck1’ is employed , although within the possible fre-
quency limitations previously mentioned any available integral equation formula-
tion could be used.

15. Cons ider an acous tic wave (p
~~ 0 (r)) incident upon the closed surface S of

the elasti c struct ur e, resulti ng in a scattered acoustic wave with pressure
p (r ). Then , from Green ’s Theorem , the t otal acoustic pressurescatt
p(r) (.‘ pin

(r) + p oatt (r)) satisfie s the Helmholtz integral formulae

p(r’) — P~~ 0(~~~) £‘ in E (5a )

• ~~~

‘ 

~~ 
ac 

~~~r ’) — ~L (r)G(r r ’)}~~~ = ~~~~~ p(r ”) — pin (r ’) r ’ on S (5b )
r r 

— (
~~

) ~~ ~ (5c)

where E is the infinite acoustic madium exterior to S, I is the interior of the
surface S and a is the solid angle subtended by the acousti c fluid at the point
r ’ on S (for a anooth surface , a = 2w everywhere).

—ik l r—r ’I
G(r,r’) = 

e (6)
‘ u —

is the three—dimensional free—space Green ’s function for the Melinholtz equation
(3 ) ,  and denotes differentiation in the outwar d noz~~l direction (

~) at

r on S (i.e. from S into the fluid.). In the case of pure radiation the total
acoustic field p(r ) ,  which now consists of radiated pressure only, also satisfies
the Helaholts formula e (5) with the ter m absent.

16. On any part of’ the surface S wh ich has a well—defined normal direction,
t~~ relation (2) gives

= iWP~ v(r’) ( 7)

wher e v(r) is the outward norma]. enrfaoe velocity.

_ _ _  
~~~~~ •~~~~~~-
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11. ier~ce , equations (~ b) and ( So) ,  known as the Surface Helmholtz Equ~ tion
(~~~E ‘uid interior Helaholts Relation (IHR ) resp ectively, relate the acoustic
pressur e on the str~~ tur e surface to the n ormal ,~rf aoe velocity. Both hav e - 

-
been used as the ~~~~ for the solut.~.on of acoustic radiation or scattering
problems wh en either the sur r’ace pressure or velocity is known, although

neither is entirely adequate.3 36,1 t The SHE is the most ai ltab le for

numeric~i1 trea~~ent but exhibit s non—un iqueness of’ the solution , whenev er the
wavttn umber k is an eigenval ue of the Dirich ].et eigenproblem for the int erior

r egLu n i25 . The i8~ can be sho~~i to possess a unique soluti on if it is sati s—

all inter ~or points
35 (for an axisyiauetric problem it is o nly necessary

t~ en~ - ’rc~ tn~ x~~~ation at all points al ong the axis of symm etry) but suffers
from numL —~ cal instability due to its similarity to an integral equation of the
~‘i~- --~ k~ m~i with non—singular kernel.

i S .  T~i* i~ ea of Schenck was to  comb ine the numerical stability of the SHE with
• the j r . i . u t n e~ s property ~~~

‘ the I~fl~ by overdetermining the set o f linear equat ions
obta ined r rom a numerical approx imation of the SHE with a small numb er of add.i—
t~ omtl e qu&’i ons derived f rom the IHR. The resulting linear system is then

o l v e d  by a least squares procedure. This method is generally known by the
acronym CHIEF (~ombined Helmholtz Integral Equation Formulation). Schenok proved
that at a critical wavenumber only the required solution of the SHE will simul—
t an- ’ou~ 1y s - ~t is fy the IHR , provided the IHR is not evaluated on a nod al surface
ot the relevant interior eigenfuncti on.

i~~. ~~ practice the CHIEF method is satisfactory only at relatively low fre—
qu~-’ncie~ when a s ufficient  number of oorrectly positioned interior nodes can be

seLecte i if required. Jones25 has su~~ ested a systematic ap proach to this choice.

2~. in ord r to obtain a discrete matrix approximation to the SHE and IHR a
t~~ llte  .Ienjent me thod is used. Approximations to the surface acoustic presaire
ard n i’m ~u sur face v e b c  i ty are assumed in the for ma,

~~ 
p~ ~~ (r) (8)

~~ 
v . v 1(r) (9)

- ~r ) and •~ ( r )  are scalar ba siz t~inctions defined on some surface S

a~~ rox. ati ng S. C:liocati ori of’ the SHE (Sb) at m surface point s

i l , L , . .. , m , at which there exists a well defined normal directi on, and the
IHR( c ’ ~tt ot ’ interi or point s ~~~ i=m+1 , m+2 , . . . ,  mim ’ leads to the matri x

B” + (io)

A .
~ 4: ~v (r .~ — I ~~(r ) ~~~~~.— (r ,r~ ) 

~~r ( i i )
— i  J ‘

~ 

— 1’~r — —
S.

--
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7.

~~~ = i~i,p~.f xj(~
)G(r

~~j
) da (12)

for i=1 ,2,..., m+m’; j=1 ,2,..., m,

and p = 1p1 p ... ~~~~ v = 1v 1 v2 ... and

t / \ / \ /

~inc ~~inc~~1
1 

~ino\~2
1 

~ino
\
~m+m’’~

Details of a partioular thoioe of’ basis functions ath a method of generati ng
• the approximate surface S are discussed later.

21 • Note that the resulting matrices are full, in oontra st with the sparse
banded matrices that are typical of the numerical solution of’ differential
equation probl ems by fi nite element or finite differe nce metho ds , and the ooet—
ficients, whic h are frequency dspe~ment, must in general be derived via time—
consuming numerical quadrature. Also, since collocation has been employed to
obtain sufficient relations between the parameters, the aysthn is not symmetric.

22. The syst~ n of e quation s (10) is sufficient to determine completel y the
aooustio fi eld in two particular oases of interest; namely f or radiation

• (pin0(r) 
a 0) where the surface velocity is specified, and for scattering where

the acoustic impedanc e of the aurfaoe is specified, most usually assumed to be
a perfectly hard or rigid surface (v(r) a 0).

23. However , in general the vi bra ti onal response of the structur e must be
taken into account , in which case equation (10) merely provides a relationship
between acoustic pressure and normal velocity at the structure surface .

STRUCTURAL EQUATI(~S

21,. The region enclosed by the surface S is assumed to contain an elastic
structure whose nx tion is governed by the linear equations of elasticity,

div c(r,t) + F(r,t) = p
~ 

L~~U(r ,t) (13)

where ~~Lr,t) is the stress tensor , t(E,t) represents external forces, p is the

struc tire density , and u(~,t) is the particle displacement.

25. The discretisat ion of these e quation s by the finite element method is now
a familiar techn ique 13 and will not be described in detail here. An approxi ma-
tion to the structura l displacement is assume d in the form

i t  nU(r,t) e 
~~ *~(r) (11i )

— i=1 —

where each •~(r) is a dia gonal matrix (of order d, the spatial dimension of the
• problem) of’ baeis functions defined throughou t the volume of’ the structure.

These basis functions are normally c hosen such that t hey va nish at all but one
node of an element subdivision of the structure, in which case the vector

L ~~~~~
• - •

~~~~~~~~—— - .  -• -~~~~~~~~~ - - • —  - —~~~~~~~~~~~~~~ — • —-- —  • - ~~



parameter 
~~ 

describes the displacement at tha t nod e. If each componen t of the

parameter u~ has the same associated basis function, as is frequent ly the case
in p ”~’~ 

t ~~ the matrix *j(r) may be repla ced by a soalar ba aia function

2t .  The finite element equations for the struc ture with the harmonic time
dependence omitted , are then of the form

(K + i~c - w2
M) q f (k) 

+ f(P) (is)

where K , C and U are stiffness , damping and mass matrices respecti vely, q is the
vector of p !u-ameters ~j ,  is a consistent load vector derived from known

applied forces, and t(P) is a consistent load vector represent ing the acoustic
• fluid pressure acting on the fluid—structure boundary. Explicitly , the vector

has components

= - p(r) ,i(r) n dS (16)

where this notation is used to define simultaneously aU the component s of f (P )
assoc iated wi th  the vector pa rameter ~~~~.

27. The matrices K and H an~l usually C are symmetric and banded and if struc-
tural damping is ignored , the system is real . If’ th ere is no acou stic loading
on the struc ture or if the str uc ture is only subjected to a static fluid pressure ,
the .‘~y- f ~~’ if equations (is) alone define s the disp lacement of the structure in
terms of the applied loads. However , in the case of dynamic fluid—solid inter-
action , these equations only relate structural displacements to the acoustic
pressure at the fluid—struc ture interface.

COUPLED K~UATI0N~ OF MOTION

~~~. Th~ oomplete solution of’ the fluid—struc tur e interaot ion probl em may now be
described by c ombini ng the a coustic e quations (10) with the stru ctural equations
( i s) .  Substitution of the repre sentation (8) for the surface aooustio pressure
into ( 16) leads to

f~~~ = —Lp (1 7)

where

~(r) •:( r) 
~~ 

dC~ (1 8)

b r t = I , 2 , .... n; j 1 ,2 , ..., m , which ensures oontinuit y of soun d pressure
between the structural and acoustic models .

29. Continuity of’ normal surface velocity is achieved by matching at s~~e set
~r •~urf.- tue  nodes , £ji 1:1 ,2, . .. ,  k , the ap proximations (9) and (i~,) to give

Xv iwL ’ q (19)



1 a ~~~~~

1
9.

whe re

Xii X,~(~ j ) (20)

for 1=1 , 2, ..., k , j al ,2 , ..., a, and

I • ( r ’ ) n ’ 21ii il _i —i

for i.~1 ,2 , ..., k; j =1 , 2 , ..., n , with n~ being th. outward norma l direc tion
at r ’ .—i

30, Normally the basis functions ~~
(
~) and Xj(~ ) wou ld be chosen to be the

same and to interpolate m surface points . These would then be the natura l
oollooat ion points for the SHE and would also be the positions at which to
ensure the continuity of velooit~,y. In this case X would be the identity matrix• If these aooust io nodes coincide mith some or all of the sur face stru otural
nodes then the non—iero elements of the matr ix L’ are simply components of the
outward normal direotlons at the acousti o nodes.

31. The soluti on of equation s (10),  ( 15 ) ,  (17) and (19) may be accomplished in
a number of ways . Elim ination of the structura l displacement vector leads to a
combined matrix equation in acoust ic form

(A + DL) p = Df~~~ + ~~~ (22)

where

D iwBX 1 L ’ (
~ + iwC—w 2M)~~. (23)

Ono e the surface pressure has been deter mined the structura l motion follows
directly from

q (K + twc — Ols,~)
_1 

(~~(k)  
— Lp) . (24 )

Init ial elimination of the acous tic Ir .asur e leads to a perturbation of’ the
structural equat ions ,

(K + iwC — t,
2M + iwLA 1 BX 1 L ’) q f at) 

— LA 1 
~~~~ 

(25)

with the surface pressure then being given by

p = A 1 (wBf 1 L’ q +

12 . if’ it is necessary to t’orm non—squ are ru atrices A and B to overcome non—
uniqueness problems , the inver as of matrix A is to be understood in a gen~ ’alis.dleast squar es ~~~~~~~~

Let

LA 1B11L’ w(R1+i1t~) (27)

then equat ion (25 ) becomes

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(K + i~(c + ~a1) - 2 (K + a2))  q ~(ic) - LA 1 p
~~0 (28)

and the effect of the flu id can be seen as added mass and damping terms. If
the fluid is oonsi dered inc ompressible (the low freque ncy limit , k = o) and
hence unable to sustain a sound field, the matr ioes A and B become totally real
and imaginary respectively and the added damping term is , as expected , iden—
tioal ]y zero . In this case it is the Lap lao. equation which governs the fluid
behaviou r , for wh ioh there are no non—unique ness or non-existence prob lems
associated with an integral equation formulation .

33. From a comixa tation al point cd’ view the system of equations (22) is dense ,
complex, unaymm.trio and of’ dimension (m+a ’) x a. As an intermedia te step it
is necessary to f orm the products DL and ~~~~~~ not by computing explicitl y the
inverse ma trix (x + iwC — w~K) 1 but by solv ing an nd x nd system of linear
equations with (K + iwC — w~M) as the coefficient matrix and the c olumns of L
and also f~~~ as the ri ght hand sid e vectors. Efficient r outines are available ,
due to the symmetry and ba ndednesa of the coefficient matrix , to carry out this
prooed ur e the result of which is retained for a~bsequent evaluation of the
structural displacement parame tars.

34. Now consider the system of e quations (25) . Due to the acoustic per turbing
term , the sys tem no l onger possesses the str uc tural featu r es of band edness and
symmetry , but is relatively dense, c omplex , unsyasetric and of dimension nd x nd.
As an intermediate step in this calculati on it is necessary to form A 1 B and
A 1

P inO by solving an (a + a ’) x a dense complex system with multiple right ha nd
sides using a least square s prooe dur. .

35. Sinc e in general n ~ (a + a’) it would app ear computationally more effi-
cient to formulate the coupled solution as the system of equations (22) and this
is pr eferred here , although some authors have adopted the alterna tive

8,12appr oach.

• 36. For many real complex structures submerged in water , particularly when no
symmetry is present , the finite element model would necessari ly have a large
number of d egrees of freedom and thus excessive computer coat may restrict
either of the above appr oaches . In this case a modal approach may be used to
advantage ,37 whereby the struc ture displacement is approxima ted by a linear
combina ti on of the dominant in—vacuo , und amped normal modes of the structur e.
The moda ’. frequencies (Ai ) and mode shapes (B k ) are efficientl y obtained from
equation ( i s)  wi th the load and dam ping t erms set to sero ,

(K — A1
2 H) e~ = 0. (29)

A convenient normalisation is usually

= 1 (so)

.T~~ ~~ = (31 )
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with the orthogonality relations

T T T i tO~ M~~~ = 0~ K 8
1 = u ~32j

holding for i ~? j .

• If the structur e displacement is now expressed in terms of N of these modes as

q = 8 a  ( 33)

where a is a vect or of pa rameters and e is the matrix whose oolumns are the
N normal modes , the acoustic and structural f orms of the coupled problem become
respectively ,

(A + SL) p = 5f~~ ) 
+ (34)

where

S iwBx 1
L’ 8 (A + jo eTc e — w

2
i)~~ 8

T (
~~

)
and

(A + iw 9T (C + LA~~BL ’) e — 
21) a 9T(~

(k) 
— LA~

1
p~~0

). (36)

A is the diagonal matrix with elements A~
2.

37. These systems are similar to those given previously except that if only a
• small number of’ dominant e igenmodes are chosen to represent the displacement,

the ma trices derived from the struc tural model are of smaller size (N t n) .  Of
course the eigensolutiona of the structure also have to be determined , but thi s
need only be carried out once f or a structur e while a coupled solution might be
required at a number of frequenoies. If no internal damping is presen t or if
present can be represented in a particularly simple manner , the matr ix inversion

• required in equation (35) beoome s trivial .

38. Once the surface pressure and structural displacement ( and hence n ormal
surface velocity ) have been e val uated , the pressure at any position in the fluid
may b e d e termined d irectly from the Helmholtz e quati on (5a ) via numerloal
quadratur e in an ana logous manner to the derivation of the coefficients of’ the
acoustic matrices A and B. For positions at large distances , R , in terms of the
acoustic wavel engt h , from the structur e the radia ted or soattered part of the
acou stic f ield ha~ an angular distribution independent of R. The dependence on
k is of the form p(—ikR)/~t which may be fac tored out of the Heliuholts integral
to simplify it .~ e i t i o n ~~

8

i . Thu s equations which describe a complete solution of the coupled fluid—
structure interaction problem have been presented fo r  a struc ture either subjected
to internal applied forces or acting as a scatterer of an inc ident acoustic wave.

one of tht’ vecto rs f °~ end p~~0 will be identi cally zero although the
formulation does u~t require this to be so.

_ _ _ _
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NUK~~ICAL IKPL~~ENJ?ATI0N AND RESUVI’S

40. In order to evaluate the coefficients of the ma trices A and B in the
acoustic equations (10) it is neoeasary to define a surface Se , an approximation
to S, choose the basis fu nctions *~(~,) and xi(E) appearing in the surface prea—

sure and normal surface velocity representations respectively, choose a set of
collocation points , and finally select an efficient numerical integration
routine.

41. A ~urfaoe 5 may be defined as the continuous union of’ a sub—regi ons Si
.,

each of which interpolates to some degree a set of nodes lying on S. if the
transformation

£ = £(u,~
) (37)

maps a point (u,v) in a local surfaoe coordina t, system for the subregion S~’

to a position £ = (x , y, a) in the global. cartesian coordinate qst em for the
- ‘  surface S, then an integral of the form

I = f(r)  dS (~8)

may be approximated by

I ~~ Z I f(r)  ./~ dudv 
(39)

i=1 1~~~*
I

where

D = 1)1
2 

+ 1)2
2 

+ D3
2 (4k))

and

- 
a(~.v. a) D ~(z x) a(x. y)

I - a(u , v) ‘ 2 eCu , ‘) ‘ 
D3 = a(u , ‘v~ 

. (~i

(D1, D2, D3)/~~~ is the unit normal to at (u, v), which is required to

evaluate the normal deri vative of the Green’s function,

42. In particular , triangular subregions of S are interpolated quadratioally
through,

r z (1 —u—v)(1—2u—2v) s, + u(2u—i) £2 + v(2V—i ) r
3

(42)
+ f,uvr4 + 4v (1-u-v)E5 

+ 4u(1—u—v)r6

where the nodes r1, £2 and r
3 

map to the vertices (0, 0), (i , 0) and (0 , 1)

respectively of a triangle in the (u , v) surface coordinate system , and the

nodes r~ , r5 and £6 map to the mi daide positions (ii, ~j )  (0 , i~) and (j~ o)
reapeotivaly. To ensure an invertible mapping with the Jacobian being 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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non—vanishing within the triangle certain restrictions are necessary upon the
positions of the mid3ide nodes j~~

, ~~ and ~~~~ A similar trans formation will
map biquadratically nine reasonably pos itioned nodes to the vertices, aidsidepositions and centre of a unit sqiare in the local surface coordinate System.
43. In the present implementation of the CM~~F method each subregion S~~ ~~
~~~ defined by quadratically interpolating either six or nine nodes lying inS to give triangular or quadri lateral sub regions respectively as appropriate.Piecewise constant approxima ti ons ere taken for the surface pressure and normalsurface veloci ty, such tha t the basis fu nctions are defined as

Ii r i n S e
= Xi(r) = (~~)

1° otherwise

• 44. In the standard finite element t erminolo&y, these e lements are of thesuperparametri c type with the geometry being specified to a greater accuracythan the unknown functions.

45. The collocation points are naturally taken as the centroida of the surfaceelements and. the piecewise constant computed a olution is usually observed tobest approximate the true soluti on at these positions . Although such a functionapproximation may beem rather crud e, it has successfully formed the basis of
many practical acoustic radiatioz~/ecattering computer programa.14~~

7

-
* 4.6. Numerical exper ienc e with a spherical surface indicates that quadratic

• surface elements lead to an increase in accuracy over a piecewise planar surfaceby a factor of at least 20, whilst a linear function approximation gives littleor no improvement over piecewise constant basis functions . The latter behaviouris anal ogous , for integral equation, , to the midpoint rule being m ore accurate• than the trapezium rule f or numerical integration . The current interest inintegral e quation method s will no doubt provide more insight into the gains to
be made with higher order approximations. In particular , Burton31 has suggestedthe use of isoparametric bioubic spline element, as the basis of an improvedacoustic program.

4.7. The coefficients of’ the acoustic matrices mist be evaluated throughnumerical quadrature. Singular integraixi s arise whenever the collocation pointlies within the region of integration Sf, tha t is, for the diagonal matrix
elements Au and Bij , i=1 ,2, ..., m derived from the SHL

48. The dominant part of the singularity in the diagona l elements of theA matrix may be removed by rewriting the double layer potential term as

p(r) 
~~~ 

(
~~~‘) dS~, ~~~ {~c~ ~~~ 

— 

~~~

‘) ~~2. (r ,r I ) }  dS ~~~

-~~ç~’)
where

G0(r,r ’) = 7 I - ~’J



-

~~~~ 
_ _ _ _ _ _ _

14..

is the free—space Green’s function for the Laplacian operator, and use has been
made of the identity,

£ (r,r’) dSr = — 4 r’ on S. (‘6)

The weak singularity of ~~~ (
~,~ ‘) at ~=r ’ has been subtracted out by one of the

same form of ~~~ (r,r’).

4.9. Then , for the particular basis funetions defined by (4.3),

= 1 .0 + 
~~~ (c~~

) dS — ~~~ ~~~~~ ~~~~

50. Numerically, the same integration rule should be employed~ for both inte-grals ~~w the subregion S~’ to achieve aubtactian of the singularity.
* Unforbinately, it is not possible to treat the weak a ingularity of’ the single

layer potential term in a similar manner, and a simpler but less reliable scheme
is employed . The region S1 is further subdivided into subregions suoh that the
collocation point 

~~ 
lies at a vertex of each subregion. In the surface co-

ordina te system (u, v) ,  the c ollocation point either lies at the position (4~ 4)
in the unit square or at (1, 1) within the standard triangle. The unit squar e
is divided into four subsquares by the lines u = and v = and the standard
triangle is divided into three mabtrianges with the point (~, .

~) being a co~~on
vertex. The integra tion rules adopt ed are Gaussian rules with degree of pre-
cision 3 for non—singular integrand s and degree of preoision 7 within each sub—
region f’or singular integrands.~~ ”1 Higher order rules were found to give no
significant increase in accuracy whilst with lower order rules the final solution
deteriorated in accuracy.

51 • Advantage may be tak en of any geometrical ~y-metry in the body when the
surface pressure and n ormal surface vel ocity have an identical aymaetry. The
same unknown parameters may be associated with a number of surface elements
and consequently it is only necessary to oollocate at the centroid of one of
those elements. In particular for complete axial sy etry, as in the exemp].es
discussed below, this technique may be and is employed. In such cases however ,
it would be considerably more erficient to take fuu advantage of the symeetry
and reformulat, the problem in terms of a line rather than a surface integral
equation.16

52. As an illustration of the numerical method, cons id er a plane acoustic wave
incident upon a submerged homogeneous isotropic spherical shell with no material
damping enclosing a vacuum. Two particular oases are presented ; firstly, a
relatively thick shell whioh acts very much like a rigid scatterer, and secondly
a thin shell where the structure has a more pronounced effect on the acou stic
field.

— •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
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53. Ax isymmetric fi n i t e  elements are used to model the shell for which the

mass and stiffness matrices have been defined many times.13 A six—noded iso—
parametric quadrilateral with quadratic variation in the circumferential
direction and linear variation in the radial direction was found to give accept-
able results with one element through the thickness of the shell. The acoustic
and structural elements are illustrated in Figure 1. Structural nodal lines on
the outer spherical surface coincide with acoustic element boundaries in order
to facilitate computation of the interaction matrix L.

54. Firstly, consider a spherical steel shell of outer radius 2.0 cm and
• inner radius 1.5 cm submerged in water. The frequency of the incident plane

wave is chosen cuch that the acoustic wavenumber k ( = W / c ) is unity . The
scattered surf ace pressure is ini t ial ly computed assuming the outer surface of
the shell to be perfectly rigid, in which case equations (10) alone ful ly des-
cribe the acoustic field (with v ~ o). In Figure 2 the cont inuous lines are the
real and imaginary parts of the exact solution,~~ while the computed solution is
shown using 18 elements in the direct ion of B and 24 elements in each band around
the axis of’ symmetry.

55. When the response of the elastic structure is taken int o account , modelled
with 18 structural element s , the results are as illustrated in Figures 3 and 4.

• The exact solution , shown as the cont inuous lines , is obtained through a separa-

tion of variables analysis following Goodman and Stern.1 In Figure 3 the exact
solution for the rigid surface is also shown for comparison.

5

7

• Now consider a thin spherical shell of outer radius 5.0 cm and inner radius
4.921875 cm. The scattered surface pressure when the outer surface is c onsidered
to be rigid is given in Figure 5, using the same number of acoustic elements as
for the smaller sphere. Figures 6 and 7 show the effect of including the vibra~-
tional response of the steel shell through 18 axisymrnetric structural elements.
The exact rigid sphere solution is also superimposed up on Figure 6 to emphasis

• the stronger fluid—solid interaction in this case. This is also evident from a
comparison of the magnitude of’ the surface displacements in the two cases.

57. In neither of these problems is it necessary to consider interferenc e from
interior eigenfunctions . For a spherical fluid—solid interface non—uniqueness
can only occur when the non—dimensional parameter ka (wavenumber x radius of
sphere) is a zero of’ the n—th order spherical Bessel function of the f irst  kind ,

for some value of n.
l~HlS PAGE Is 1~E~~1 ~ii tLIIY F & C ~I~(~A~~~CONCLUSIONS 7~~M COF~ F~ ’~I~1~~J I t)  D~Q ~~~~ —

58. By combin~iq- ectuations derived from a f in i t e  element analysis of a vibrati~~
elantic structure with those from an integral equation representation of an
in f in i te  exterior acoustic field , an analysis of the c oupled dynamic interaction
prob lem haj been ~~~i 1 o~~-ai t o be ~eactb le ,

59. The structural and. acoustic models may be chosen completely independently
although the procedure does simplify if interpolation nodes are made to coincide ,
the c oupling being def ined through three interaction matrices X, L and L’. Thus
advantage may be taken of existing computer progr am packages designed to solve

the two uncoupled problems. In particular, it is hoped to c ombine the PAFEC43
structural analysis program with the acoustic radiation/scattering program den—

cribed in the previous ecctior..~8
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60. some test examples for wh ich analytic solutions are available have demon-
strated the practicability and accuracy of the approach. it is hoped in the near
future to be able to compare numerical and experimental results for some more
c omplex structures in water. If an unacceptably large numer of degrees of free-
dom for the structural model are required, it may then be necessary to consider
the alternative modal approach.
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